probabilidad condicional

¿Qué es la probabilidad condicional?

La probabilidad condicional se define como la probabilidad de que ocurra un evento o resultado, basada en la ocurrencia de un evento o resultado anterior. La probabilidad condicional se calcula multiplicando la probabilidad del evento anterior por la probabilidad actualizada del evento posterior o condicional.

Por ejemplo:

  • El evento A es que se aceptará a una persona que solicite ingreso a la universidad. Hay un 80% de posibilidades de que esta persona sea aceptada en la universidad.
  • El evento B es que a esta persona se le dará alojamiento en un dormitorio. Solo se proporcionará alojamiento en dormitorios para el 60% de todos los estudiantes aceptados.
  • P (Alojamiento aceptado y dormitorio) = P (Alojamiento dormitorio | Aceptado) P (Aceptado) = (0,60) * (0,80) = 0,48.

Una probabilidad condicional consideraría estos dos eventos en relación entre sí, como la probabilidad de que ambos sean aceptados en la universidad, y se le proporciona alojamiento en dormitorios.

La probabilidad condicional se puede contrastar con la probabilidad incondicional. La probabilidad incondicional se refiere a la probabilidad de que un evento ocurra independientemente de si se han producido otros eventos o si existen otras condiciones.

Conclusiones clave

  • La probabilidad condicional se refiere a las posibilidades de que ocurra algún resultado dado que también ha ocurrido otro evento.
  • A menudo se establece como la probabilidad de B dada A y se escribe como P (B | A), donde la probabilidad de B depende de que ocurra A.
  • La probabilidad condicional se puede contrastar con la probabilidad incondicional.
  • Las probabilidades se clasifican como condicionales, marginales o conjuntas.
  • El teorema de Bayes es una fórmula matemática que se utiliza para calcular la probabilidad condicional.

Comprender la probabilidad condicional

Como se indicó anteriormente, las probabilidades condicionales dependen de un resultado anterior. También hace una serie de suposiciones. Por ejemplo, suponga que está sacando tres canicas (roja, azul y verde) de una bolsa. Cada canica tiene la misma probabilidad de ser extraída. ¿Cuál es la probabilidad condicional de sacar la canica roja después de haber sacado ya la azul?

Primero, la probabilidad de sacar una canica azul es aproximadamente del 33% porque es uno de los tres posibles resultados. Suponiendo que ocurra este primer evento, quedarán dos canicas, y cada una tendrá un 50% de probabilidad de ser extraída. Entonces, la probabilidad de sacar una canica azul después de haber dibujado una canica roja sería de aproximadamente el 16,5% (33% x 50%).

La probabilidad condicional se usa en una variedad de campos, como los seguros, la política y muchos campos diferentes de las matemáticas.

Como otro ejemplo para proporcionar más información sobre este concepto, considere que se ha lanzado un dado justo y se le pide que dé la probabilidad de que fuera un cinco. Hay seis resultados igualmente probables, por lo que su respuesta es 1/6.

Pero imagínese si antes de responder, obtiene información adicional de que el número obtenido fue impar. Dado que solo hay tres números impares que son posibles, uno de los cuales es cinco, ciertamente revisaría su estimación para determinar la probabilidad de que saliera un cinco de 1/6 a 1/3.

Esta revisado probabilidad de que un evento A ha ocurrido, considerando la información adicional de que otro evento B ha ocurrido definitivamente en esta prueba del experimento, se llama el probabilidad condicional de A dado B y se denota por P (A | B).

Fórmula de probabilidad condicional

P (B | A) = P (A y B) / P (A)

O:

P (B | A) = P (A∩B) / P (A)

Donde

P = probabilidad

A = Evento A

B = Evento B

Otro ejemplo de probabilidad condicional

Como otro ejemplo, suponga que un estudiante solicita admisión a una universidad y espera recibir una beca académica. La escuela a la que postulan acepta 100 de cada 1,000 solicitantes (10%) y otorga becas académicas a 10 de cada 500 estudiantes que son aceptados (2%).

De los becarios, el 50% de ellos también reciben estipendios universitarios para libros, comidas y vivienda. Para los estudiantes, la probabilidad de que sean aceptados y luego reciban una beca es de .2% (.1 x .02). La probabilidad de que sean aceptados, reciban la beca y luego también reciban un estipendio para libros, etc.es .1% (.1 x .02 x .5).

Probabilidad condicional frente a probabilidad conjunta y probabilidad marginal

La probabilidad condicional: p (A | B) es la probabilidad de que ocurra el evento A, dado que ocurre el evento B. Por ejemplo, dado que sacó una tarjeta roja, ¿cuál es la probabilidad de que sea un cuatro (p (cuatro | rojo)) = 2/26 = 1/13? Entonces, de las 26 tarjetas rojas (dada una tarjeta roja), hay dos cuatros, por lo que 2/26 = 1/13.

Probabilidad marginal: la probabilidad de que ocurra un evento (p (A)), se puede considerar como una probabilidad incondicional. No está condicionado a otro evento. Ejemplo: la probabilidad de que una carta extraída sea roja (p (rojo) = 0,5). Otro ejemplo: la probabilidad de que se saque una carta es un 4 (p (cuatro) = 1/13).

Probabilidad conjunta: p (A y B). La probabilidad del evento A y ocurriendo el evento B. Es la probabilidad de la intersección de dos o más eventos. La probabilidad de la intersección de A y B puede escribirse p (A ∩ B). Ejemplo: la probabilidad de que una carta sea un cuatro y rojo = p (cuatro y rojo) = 2/52 = 1/26. (Hay dos cuatros rojos en una baraja de 52, el 4 de corazones y el 4 de diamantes).

Teorema de Bayes

El teorema de Bayes, que lleva el nombre del matemático británico del siglo XVIII Thomas Bayes, es una fórmula matemática para determinar la probabilidad condicional. El teorema proporciona una forma de revisar las predicciones o teorías existentes (actualizar las probabilidades) dada la evidencia nueva o adicional. En finanzas, el teorema de Bayes se puede utilizar para calificar el riesgo de prestar dinero a posibles prestatarios.

El teorema de Bayes se adapta bien y se usa ampliamente en el aprendizaje automático.

El teorema de Bayes también se llama Regla de Bayes o Ley de Bayes y es la base del campo de la estadística Bayesiana. Este conjunto de reglas de probabilidad permite actualizar sus predicciones de eventos que ocurren en base a la nueva información que se ha recibido, lo que hace que las estimaciones sean mejores y más dinámicas.

¿Cómo se calcula la probabilidad condicional?

La probabilidad condicional se calcula multiplicando la probabilidad del evento anterior por la probabilidad del evento sucesivo o condicional. La probabilidad condicional analiza la probabilidad de que ocurra un evento en función de la probabilidad de que ocurra un evento anterior.

¿Qué es una calculadora de probabilidad condicional?

Una calculadora de probabilidad condicional es una herramienta en línea que calculará la probabilidad condicional. Proporcionará la probabilidad de que ocurran el primer evento y el segundo. Una calculadora de probabilidad condicional evita que el usuario haga las matemáticas manualmente.

¿Cuál es la diferencia entre probabilidad y probabilidad condicional?

La probabilidad analiza la probabilidad de que ocurra un evento. La probabilidad condicional mira dos eventos que ocurren en relación entre sí. Examina la probabilidad de que ocurra un segundo evento basándose en la probabilidad de que ocurra el primer evento.

¿Qué es la probabilidad previa?

La probabilidad previa es la probabilidad de que ocurra un evento antes de que se hayan recopilado datos para determinar la probabilidad. Es la probabilidad determinada por una creencia previa. La probabilidad previa es un componente de la inferencia estadística bayesiana.

¿Qué es la probabilidad compuesta?

La probabilidad compuesta busca determinar la probabilidad de que ocurran dos eventos independientes. La probabilidad compuesta multiplica la probabilidad del primer evento por la probabilidad del segundo evento. El ejemplo más común es el de una moneda lanzada dos veces y la determinación de si el segundo resultado será el mismo o diferente al primero.

La línea de fondo

La probabilidad condicional examina la probabilidad de que ocurra un evento en función de la probabilidad de que ocurra un evento anterior. El segundo evento depende del primer evento. Se calcula multiplicando la probabilidad del primer evento por la probabilidad del segundo evento.